

Table Of Contents

1 Executive Summary

2 Audit Methodology

3 Project Overview

3.1 Project Introduction

3.2 Vulnerability Information

4 Code Overview

4.1 Contracts Description

4.2 Visibility Description

4.3 Vulnerability Summary

5 Audit Result

6 Statement

1 Executive Summary

On 2024.01.30, the SlowMist security team received the 9GAG team's security audit application for Memecoin

Staking, developed the audit plan according to the agreement of both parties and the characteristics of the project,

and finally issued the security audit report.

The SlowMist security team adopts the strategy of "white box lead, black, grey box assists" to conduct a complete

security test on the project in the way closest to the real attack.

The test method information:

Test method Description

Black box testing Conduct security tests from an attacker's perspective externally.

Grey box testing
Conduct security testing on code modules through the scripting tool, observing the
internal running status, mining weaknesses.

White box
testing

Based on the open source code, non-open source code, to detect whether there are
vulnerabilities in programs such as nodes, SDK, etc.

The vulnerability severity level information:

Level Description

Critical
Critical severity vulnerabilities will have a significant impact on the security of the DeFi
project, and it is strongly recommended to fix the critical vulnerabilities.

High
High severity vulnerabilities will affect the normal operation of the DeFi project. It is
strongly recommended to fix high-risk vulnerabilities.

Medium
Medium severity vulnerability will affect the operation of the DeFi project. It is
recommended to fix medium-risk vulnerabilities.

Low
Low severity vulnerabilities may affect the operation of the DeFi project in certain
scenarios. It is suggested that the project team should evaluate and consider whether
these vulnerabilities need to be fixed.

Weakness There are safety risks theoretically, but it is extremely difficult to reproduce in engineering.

Suggestion There are better practices for coding or architecture.

2 Audit Methodology

The security audit process of SlowMist security team for smart contract includes two steps:

Following is the list of commonly known vulnerabilities that was considered during the audit of the smart contract:

Serial Number Audit Class Audit Subclass

1 Overflow Audit -

2 Reentrancy Attack Audit -

3 Replay Attack Audit -

4 Flashloan Attack Audit -

5 Race Conditions Audit Reordering Attack Audit

6 Permission Vulnerability Audit
Access Control Audit

Excessive Authority Audit

7 Security Design Audit

External Module Safe Use Audit

Compiler Version Security Audit

Hard-coded Address Security Audit

Fallback Function Safe Use Audit

Show Coding Security Audit

Function Return Value Security Audit

External Call Function Security Audit

Smart contract codes are scanned/tested for commonly known and more specific vulnerabilities using

automated analysis tools.

Manual audit of the codes for security issues. The contracts are manually analyzed to look for any potential

problems.

Serial Number Audit Class Audit Subclass

7 Security Design Audit
Block data Dependence Security Audit

tx.origin Authentication Security Audit

8 Denial of Service Audit -

9 Gas Optimization Audit -

10 Design Logic Audit -

11 Variable Coverage Vulnerability Audit -

12 "False Top-up" Vulnerability Audit -

13 Scoping and Declarations Audit -

14 Malicious Event Log Audit -

15 Arithmetic Accuracy Deviation Audit -

16 Uninitialized Storage Pointer Audit -

3 Project Overview

3.1 Project Introduction

This is the staking protocol of Memecoin, including Claim, Delegation and Staking parts.

3.2 Vulnerability Information

The following is the status of the vulnerabilities found in this audit:

NO Title Category Level Status

N1
Risk of excessive

authority
Authority Control
Vulnerability Audit

Medium Acknowledged

N2
Return value not

checked
Others Suggestion Fixed

NO Title Category Level Status

N3 Redundant code Others Suggestion Fixed

N4
No zero address

check
Others Suggestion Fixed

4 Code Overview

4.1 Contracts Description

https://github.com/9gag/memecoin-staking-audit

Initial audit commit: 24e20eca249c33d89d04ef9149117bcb8d22ad9e

FInal audit commit: 62237b4a86fd95dea1bc68e3024a750145d02fd9

The main network address of the contract is as follows:

The code was not deployed to the mainnet.

4.2 Visibility Description

The SlowMist Security team analyzed the visibility of major contracts during the audit, the result as follows:

MemecoinMultiClaim

Function Name Visibility Mutability Modifiers

<Constructor> Public Can Modify State MemecoinDelegatable

multiClaim External Can Modify State -

_getRequester Private - -

multiClaimToStakeland External Can Modify State -

MemecoinDelegatable

Function Name Visibility Mutability Modifiers

MemecoinDelegatable

<Constructor> Public Can Modify State -

delegate External - -

_delegateTransfer Internal Can Modify State -

_delegatePermit Internal Can Modify State -

MemecoinDelegatableUpgradeable

Function Name Visibility Mutability Modifiers

__MemecoinDelegatable_init Internal Can Modify State onlyInitializing

__MemecoinDelegatable_init_unchained Internal Can Modify State onlyInitializing

delegate External - -

_delegateTransfer Internal Can Modify State -

_delegatePermit Internal Can Modify State -

MemecoinDelegate

Function Name Visibility Mutability Modifiers

<Constructor> Public Can Modify State -

transferFrom External Can Modify State onlyAuthorized

allowance External - -

isAuthorized External - -

MemecoinStaking

Function Name Visibility Mutability Modifiers

_authorizeUpgrade Internal
Can Modify

State
onlyUpgrader

MemecoinStaking

<Constructor> Public
Can Modify

State
-

initialize External
Can Modify

State
initializer

stake External
Can Modify

State
nonReentrant onlyValidStakingSetup

onlyValidAmount

stakeFor External
Can Modify

State
nonReentrant onlyValidStakingSetup

onlyValidAmount onlyDelegatable

_stake Private
Can Modify

State
-

unstake External
Can Modify

State
nonReentrant onlyValidStakingSetup

onlyValidAmount

_unstake Private
Can Modify

State
-

_redeemRewards Private
Can Modify

State
-

_verifyProof Private - -

stakeRewards External
Can Modify

State
onlyOwner

setStakingActive External
Can Modify

State
onlyOwner

setStakingStartDate External
Can Modify

State
onlyOwner

setUpgrader External
Can Modify

State
onlyOwner

renounceUpgrader External
Can Modify

State
onlyOwner

totalSupply External - -

stakeOf External - -

getRewardRedeeme
dAt

External - -

4.3 Vulnerability Summary

[N1] [Medium] Risk of excessive authority

Category: Authority Control Vulnerability Audit

Content

In the MemecoinStaking contract, the Owner role can modify important parameters in the contract.

function setStakingActive

function setStakingStartDate

function setUpgrader

function renounceUpgrader

Since the MemecoinStaking contract adopts the UUPS upgrade mode, the upgrader role can upgrade the contract.

 function _authorizeUpgrade(address) internal override onlyUpgrader {}

Solution

In the short term, transferring owner ownership to multisig contracts is an effective solution to avoid single-point risk.

But in the long run, it is a more reasonable solution to implement a privilege separation strategy and set up multiple

privileged roles to manage each privileged function separately. The authority involving user funds should be managed

by the community, and the authority involving emergency contract suspension can be managed by the EOA address.

This ensures both a quick response to threats and the safety of user funds.

Status

Acknowledged

[N2] [Suggestion] Return value not checked

Category: Others

Content

In the MemecoinMultiClaim contract, the constructor function does not check the return value when calling the

approve function of the memecoin token contract.The _redeemRewards function and the stakeOf function

don't check the return value when calling the _verifyProof function.

MemecoinStaking.sol#L204-L208,L211-L216,L222-L228,L233-L240

MemecoinStaking.sol#L47

 constructor(address _presaleClaim, address _airdropClaim, address _memecoin,

address _delegate, address _staking)

 MemecoinDelegatable(_delegate)

 {

 presaleClaim = IMemecoinClaim(_presaleClaim);

 airdropClaim = IMemecoinClaim(_airdropClaim);

 dc = IDelegationRegistry(0x00000000000076A84feF008CDAbe6409d2FE638B);

 dcV2 = IDelegateRegistry(0x00000000000000447e69651d841bD8D104Bed493);

 memecoin = IERC20(_memecoin);

 memecoin.approve(_delegate, type(uint256).max);

 staking = IMemecoinStaking(_staking);

 }

 function _redeemRewards(address user, Reward[] calldata rewards) private {

 for (uint256 i; i < rewards.length; i++) {

 Reward calldata reward = rewards[i];

 uint256 rewardId = reward.rewardId;

 if (usersRewardRedeemedAt[user][rewardId] > 0) continue;

 uint256 amount = reward.amount;

 _verifyProof(user, rewardId, amount, reward.proof);

 unchecked {

 balanceOf[user] += amount;

 }

 emit Transfer(address(this), user, amount);

 usersRewardRedeemedAt[user][rewardId] = block.timestamp;

 emit RewardRedeemed(user, rewardId, amount, block.timestamp);

 }

 }

 function stakeOf(address user, Reward[] calldata rewards) external view

returns (uint256 balance) {

 balance = balanceOf[user];

 if (rewards.length != 0) {

 for (uint256 i; i < rewards.length; i++) {

 Reward calldata reward = rewards[i];

 uint256 amount = reward.amount;

 uint256 rewardId = reward.rewardId;

 if (usersRewardRedeemedAt[user][rewardId] > 0) continue;

 _verifyProof(user, rewardId, amount, reward.proof);

 balance += amount;

 }

MemecoinMultiClaim.sol#L39-L49,L130-L147,L252-L266

 }

 }

Solution

It is recommended to check the return value.

Status

Fixed

[N3] [Suggestion] Redundant code

Category: Others

Content

In the MemecoinStaking contract, the three variables name , symbol , and decimals are not used.

 string public constant name = "Staked Memecoin";

 string public constant symbol = "";

 uint8 public constant decimals = 18;

Solution

It is recommended to remove redundant code.

Status

Fixed; These code have no clear context in the audited commit, but clear context is provided in the final version.

[N4] [Suggestion] No zero address check

Category: Others

Content

In the MemecoinStaking contract, the initialize function doesn't perform a zero address check on the

_delegate parameter.

 function initialize(address _memecoin, address _delegate) external initializer {

 ReentrancyGuardUpgradeable.__ReentrancyGuard_init_unchained();

 OwnableUpgradeable.__Ownable_init_unchained();

MemecoinStaking.sol#L42-L44

MemecoinStaking.sol#L54-L62

 UUPSUpgradeable.__UUPSUpgradeable_init();

 MemecoinDelegatableUpgradeable.__MemecoinDelegatable_init(_delegate);

 if (_memecoin == address(0)) revert InvalidAddress();

 memecoin = IERC20(_memecoin);

 }

Solution

It is recommended to perform a zero address check on the _delegate parameter

Status

Fixed

5 Audit Result

Audit Number Audit Team Audit Date Audit Result

0X002402020001 SlowMist Security Team 2024.01.30 - 2024.02.02 Medium Risk

Summary conclusion: The SlowMist security team use a manual and SlowMist team's analysis tool to audit the

project, during the audit work we found 1 medium risk, 3 suggestion vulnerabilities.

6 Statement

SlowMist issues this report with reference to the facts that have occurred or existed before the issuance of this

report, and only assumes corresponding responsibility based on these.

For the facts that occurred or existed after the issuance, SlowMist is not able to judge the security status of this

project, and is not responsible for them. The security audit analysis and other contents of this report are based on the

documents and materials provided to SlowMist by the information provider till the date of the insurance report

(referred to as "provided information"). SlowMist assumes: The information provided is not missing, tampered with,

deleted or concealed. If the information provided is missing, tampered with, deleted, concealed, or inconsistent with

the actual situation, the SlowMist shall not be liable for any loss or adverse effect resulting therefrom. SlowMist only

conducts the agreed security audit on the security situation of the project and issues this report. SlowMist is not

responsible for the background and other conditions of the project.

